

CE604PC: STRUCTURAL ENGINEERING – II (STEEL)

COURSE PLANNER

I. COURSEOVERVIEW:

This course is recommended for undergraduate students of Civil engineering program who are interestedinlearningthedesignofsteelstructures. The objective softhis are to learn the behavior and design of structural steel. The course is structured to introduce inelastic analysis of steel structures, issues of strength and stability and its application to design for case of extreme loading, and related code provisions. The objective of the course is to make the student conversant with the design principles of steel structural elements as per IS Codal provisions

II. PREREQUISITE(S):

Level	Credits	Periods	Prerequisite
UG	4	5	Structural Analysis I& II

III. COURSEOUTCOMES:

At the end of this course, a student will be able to:

COURSE	Description	Blooms	PROGRAM
OUTCOMES		Taxonomy	OUTCOMES
		Levels	& PROGRAM
			SPECIFIC
			OUTCOMES
	Analyze the tension members,		PO1,PO2,PO3,
C01	compression members.	Understand	PSO 1
	Design the tension members,		PO1,PO2,PO3,
	compression members and column		PO5, PSO 1
C02	bases and joints and	Understand	
	connections		
	Analyze and Design the beams including		PO1,PO2,PO3,
C03	built-up sections and beam and	Design	PO5, PSO 2
0.05	connections.	Design	
	Identify and Design the various		PO1,PO2,PO3,
C04	components of welded plate girder	Design	PO5, PSO 1,
	including stiffeners	6	PSO 2

IV. HOW PROGRAM OUTCOMES AREASSESSED:

	Program outcomes	Level	Proficiency assessed by
PO1	Engineering knowledge : To Apply the knowledge of mathematics, science, engineeringfundamentals/principals,	0.4	Assignments
	and civil engineering to the solution of complex engineering problems encountered in modern engineering practice.		
PO2	Problem analysis: Ability to Identify, formulate, review research literature, and analyze complexengineering problems related to Civil Engineering andreaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	1.2	Exercise, Exams
PO3	Design/development of solutions : Design solutions for complex engineering problems related to Civil Engineering anddesign system components or processes that meet the specifiedneedswithappropriateconsiderationforthepublic health and safety, and the cultural, societal, and environmental considerations.	0.4	Exercise
PO4	Conduct investigations of complex problems : Use research-based knowledge and researchmethods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	-	Discussion, Seminars
PO5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modernengineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	1.2	Discussion, Seminars
PO6	The engineer and society : Apply reasoning informed by the contextual knowledge to assesssocietal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the Civil Engineering professional engineering practice.	-	Discussions
PO7	Environmentandsustainability :Understandtheimpactof the Civil Engineeringprofessional engineering solutionsin societal and environmental contexts, and demonstrate the knowledge of, and need for sustainabledevelopment.	-	
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	-	
PO9	Individual and team work : Function effectively as an individual, and as a member or leader indiverse teams, and in multidisciplinary settings.	-	

PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and withsocietyatlarge,suchas,beingabletocomprehendand write effective reports and design documentation,make effective presentations, and give and receive clear instructions.	-	
PO11	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work,	-	
	as a member and leader in a team, to manage projects and in multidisciplinary environments.		
PO12	Life-long learning : Recognize the need for, and have the preparation and ability to engage inindependent and life-long learning in the broadest context of technological change.	-	Prototype, Discussions

V. HOW PROGRAM SPECIFIC OUTCOMES AREASSESSED:

	Program outcomes	Level	Proficiency
			assessed by
PSO 1	ENGINEERINGKNOWLEDGE: Graduateswillbeabletoapply technical knowledge in drawing, analysis, design, laboratory investigations and construction aspects of civil engineering infrastructure, along with good basics inmathematics, basic sciences and technical communication.	1.2	Lectures and Assignments
PSO 2	BROADNESS AND DIVERSITY: Graduates will be able to summarize and can demonstrate about societal, economical, environmental, health and safety factors involved in infrastructural development, and shall work within multidisciplinary teams with competence in modern tool usage.	-	Tutorials
PSO 3	SELF-LEARNING AND SERVICE: Graduates will be able to pursue lifelong learning and professional development to face the challenging and emerging needs of our society, ethically and responsibly.	-	Seminars and Projects

1-None

2 -Supportive

3 – Highly Related

VI. SYLLABUS:

UNIT – I:

Materials – Types of structural steel – Mechanical properties of steel – Concepts of plasticity – yield strength - Loads and Stresses – Local buckling behavior of steel. Concepts of limit State Design Different Limit States – Load combinations for different Limit states - Design Strengths - deflection limits – serviceability – stability check.

Design of Connections-Different types of connections - Bolted connections - Design strength -

efficiency of joint– prying action - Welded connections – Types of welded joints – Design requirements - Design of Beam-column connections - Eccentric connections - Type I and Type II connection – Framed connection– stiffened / seated connection.

UNIT – II:

Design of tension Members – Design strength – Design procedure splice – lug angle.Design of compressinmembers-Bucklingclass-slendernessratio/strengthdesign-laced-battenedcolumns-splice- column base- slabbase.

UNIT – III:

Plastic Analysis;Plastic moment – Plastic section modulus - Plastic analysis of continuous beams Design of Flexural Members – Laterally supported and unsupported Beams – Design of laterally supported beams - Bending and shear strength/buckling – Built-up sections - Beamsplice Plastic Analysis;Plastic moment – Plastic section modulus - Plastic analysis of continuous beams Design of Flexural Members – Laterally supported and unsupported Beams – Design of laterally supported beams - Bending and shear strength/buckling – Built-up sections - Beamsplice

UNIT-IV:

Design of welded plate girders – elements – economical depth – design of main section – connections between web and flange – design of stiffeners - bearing stiffener– intermediate stiffeners – Design of web splice and flange splice.

UNIT-V:

Design of Industrial Structures; Types of roof trusses - loads on trusses - wind loads - Purlin design - truss design - Design of welded Gantry girder

SUGGESTED BOOKS:

TEXT BOOKS:

- 1. Steel Structures by Subramanyam.N, Oxford Higher Education, NewDelhi.
- 2. Limit State Design of steel structures by S.K. Duggal, Tata McGraw-Hill, NewDelhi.

REFERENCE BOOKS:

- 1. Design of steel structures by k.s.Sai ram ,person education
- 2. Design of Steel Structures by Edwin Gaylord, Charles Gaylord, James Stallmeyer, Tata Mc.Graw-Hill, NewDelhi.
- 3. Design of steel structures vol.1&2-ram Chandra, standard publications
- 4. Design of steel structure, structures, s.s bhavikatti, ik int publications house, newdelhi, 2010

MOOC'S- SWAYAM/ NPTEL:

https://nptel.ac.in/courses/105106112/

https://nptel.ac.in/courses/105106112/

GATE SYLLABUS:

Working stress and Limit state design concepts; Design of tension and compression members, beams and beam- columns, column bases; Connections - simple and eccentric, beam-column connections, plate girders and trusses; Plastic analysis of beams and frames.

IES SYLLABUS:

Principles of Working Stress methods, Design of tension and compression members, Design of beams and beam column

connections, built-up sections, Girders, Industrial roofs, Principles of Ultimate load design.

VII.	COURSE PLAN:	

Lect ure No.	Un it No.	Topics to be covered	Link for PPT	Link for PDF	Course learning outcomes	Teaching Methodol ogy	Refe renc e
1		UNIT-I Introduction to Steel, Materials - types of structural steel	https://drive.g oogle.com/driv e/folders/1LftK pdFwm4beJczg 5NIPiFshGkVsv b4X	https://drive.g oogle.com/driv e/folders/1Vpj 72MXm0- oUAmo_FXgxY Pn38-jbz7Vo	To understand: Introduction to Materials	Digital writing pad, PPT, Chalk and talk	
2		Concept of Plasticity, Yield Strength	https://drive.g oogle.com/driv e/folders/1LftK pdFwm4beJczg 5NIPiFshGkVsv b4X	https://drive.g oogle.com/driv e/folders/1Vpj 72MXm0- oUAmo_FXgxY Pn38-jbz7Vo	To learn: Concepts of plasticity	Digital writing pad, PPT, Chalk and talk	
3	1	Concept of Limit State Design	https://drive.g oogle.com/driv e/folders/1LftK pdFwm4beJczg <u>5NIPiFshGkVsv</u> <u>b4X</u>	https://drive.g oogle.com/driv e/folders/1Vpj 72MXm0- oUAmo_FXgxY Pn38-jbz7Vo	To understand: Code for Steel Structures	Digital writing pad, PPT, Chalk and talk	T1, T2, T3
4		Limit States – Design Strengths	https://drive.g oogle.com/driv e/folders/1LftK pdFwm4beJczg <u>5NIPiFshGkVsv</u> <u>b4X</u>	https://drive.g oogle.com/driv e/folders/1Vpj 72MXm0- oUAmo_FXgxY Pn38-jbz7Vo	To learn: Concepts of limit state design	Digital writing pad, PPT, Chalk and talk	
5		Deflection Limits	https://drive.g oogle.com/driv e/folders/1LftK pdFwm4beJczg	https://drive.g oogle.com/driv e/folders/1Vpj 72MXm0-	Deflection Limits	Digital writing pad, PPT,	

		<u>5NIPiFshGkVsv</u> <u>b4X</u>	<u>oUAmo_FXgxY</u> <u>Pn38-jbz7Vo</u>	the second se	≥ Chalk and talk	
6	Serviceability – serviceability – stability check	https://drive.g oogle.com/driv e/folders/1LftK pdFwm4beJczg 5NIPiFshGkVsv <u>b4X</u>	https://drive.g oogle.com/driv e/folders/1Vpj 72MXm0- oUAmo_FXgxY Pn38-jbz7Vo	To understand: serviceability	Digital writing pad, PPT, Chalk and talk	
8	Design of connections, different types of connections	https://drive.g oogle.com/driv e/folders/1LftK pdFwm4beJczg 5NIPiFshGkVsv b4X	https://drive.g oogle.com/driv e/folders/1Vpj 72MXm0- oUAmo_FXgxY Pn38-jbz7Vo	To understand: Design of Connections	Digital writing pad, PPT, Chalk and talk	
9	Design of connections, different types of connections	https://drive.g oogle.com/driv e/folders/1LftK pdFwm4beJczg 5NIPiFshGkVsv b4X	https://drive.g oogle.com/driv e/folders/1Vpj 72MXm0- oUAmo_FXgxY Pn38-jbz7Vo	To understand: Design of Connections	Digital writing pad, PPT, Chalk and talk	
10	Bolted connections- Design strength	https://drive.g oogle.com/driv e/folders/1LftK pdFwm4beJczg 5NIPiFshGkVsv b4X	https://drive.g oogle.com/driv e/folders/1Vpj 72MXm0- oUAmo_FXgxY Pn38-jbz7Vo	To understand: Design strength	Digital writing pad, PPT, Chalk and talk	
11	Efficiency of a joint, Prying Action	https://drive.g oogle.com/driv e/folders/1LftK pdFwm4beJczg 5NIPiFshGkVsv b4X	https://drive.g oogle.com/driv e/folders/1Vpj 72MXm0- oUAmo_FXgxY Pn38-jbz7Vo	To understand: Efficiency of a joint	Digital writing pad	
12	Types of Welded connections	https://drive.g oogle.com/driv e/folders/1LftK pdFwm4beJczg 5NIPiFshGkVsv <u>b4X</u>	https://drive.g oogle.com/driv e/folders/1Vpj 72MXm0- oUAmo FXgxY Pn38-jbz7Vo	To learn: Welded connections	Digital writing pad	
13	Types of Welded joints- Specifications, Design requirements	https://drive.g oogle.com/driv e/folders/1LftK pdFwm4beJczg 5NIPiFshGkVsv b4X	https://drive.g oogle.com/driv e/folders/1Vpj 72MXmO- oUAmo_FXgxY Pn38-jbz7Vo	To learn: Welded connections	Digital writing pad, PPT, Chalk and talk	
14	Design of beam-column connections	https://drive.g oogle.com/driv e/folders/1LftK pdFwm4beJczg 5NIPiFshGkVsv <u>b4X</u>	https://drive.g oogle.com/driv e/folders/1Vpj 72MXm0- oUAmo_FXgxY Pn38-jbz7Vo	To learn: Welded connections	Digital writing pad, PPT, Chalk and talk	
16	Eccentric connections- Type I & II connection	https://drive.g oogle.com/driv e/folders/1LftK pdFwm4beJczg 5NIPiFshGkVsv b4X	https://drive.g oogle.com/driv e/folders/1Vpj 72MXm0- oUAmo_FXgxY Pn38-jbz7Vo	To understand: Design of Welds	Digital writing pad, PPT, Chalk and talk	

					WAATTOO ULUE BAADO LOUIS		_
			https://drive.g	https://drive.g	ν	Digital	
			oogle.com/driv	oogle.com/driv		writing	
17			<u>e/folders/1LftK</u>	<u>e/folders/1Vpj</u>		pad. PPT	
- /		Framed connection- Stiffened/	pdFwm4beJczg	<u>72MXm0-</u>	To learn. Tension	Chalk	
		seated connection	<u>DIVIPIESIIGKVSV</u> b4X	Pn38-ibz7Vo	Members	and talk	
		seated connection	bttps://drivo.g	https://drivo.g	Wiembers	Digital	
			oogle com/driv	oogle com/driv		Digital	
10			e/folders/1LftK	e/folders/1Vpj		writing	
18			pdFwm4beJczg	72MXm0-		pad, PP1,	
		Framed connection- Stiffened/	<u>5NIPiFshGkVsv</u>	<u>oUAmo_FXgxY</u>	To learn: Tension	Chalk	
		seated connection	<u>b4X</u>	Pn38-jbz7Vo	Members	and talk	
			https://drive.g	https://drive.g		Digital	
			oogle.com/driv	oogle.com/driv		writing	
19			e/folders/1LftK	e/folders/1GBI	To understand:	pad, PPT,	
		UNIT-II Design of tension	5NIPiFshGkVsv	DdkE4wr9dRtb	Design strength,	Chalk	
		Members	b4X	zzP35e	Design	and talk	
			https://drive.g	https://drive.g		Digital	1
			oogle.com/driv	oogle.com/driv		writing	
20			<u>e/folders/1LftK</u>	e/folders/1GBT	To learn:	pad. PPT	
		Simple & built up members -	pdFwm4beJczg	s2K6D10wLU-	procedure splice	Chalk	
		design strength	<u>5NIPIFSNGKVSV</u> h4X	<u>Dake4wr9akto</u> 77P35e	lug- angle	and talk	
	-		https://drivo.g	https://drivo.g		Digital	
			oogle.com/driv	oogle.com/driv		Digital	
01			e/folders/1LftK	e/folders/1GBT		writing	
21			pdFwm4beJczg	s2K6D10wLU-		pad, PP1,	
			5NIPiFshGkVsv	DdkE4wr9dRtb	To learn:	Chalk	T1.
	-	Built up members -design	<u>b4X</u>	zzP35e	procedure	and talk	T2.
			https://drive.g	https://drive.g		Digital	T3
			oogle.com/driv e/folders/11ftK	oogle.com/drlv e/folders/1GBT		writing	
22	2		pdFwm4beJczg	s2K6D10wLU-	To understand:	pad, PPT,	
		Design procedure splice – lug	5NIPiFshGkVsv	DdkE4wr9dRtb	Problem related to	Chalk	
		angle	<u>b4X</u>	<u>zzP35e</u>	tension members	and talk	
			https://drive.g	https://drive.g		Digital	
			oogle.com/driv	oogle.com/driv	To understand:	writing	
24			e/folders/1LftK	e/folders/1GBT	Introduction to	pad, PPT,	
			5NIPiFshGkVsv	DdkF4wr9dRth	compression	Chalk	
		Design of compression members	b4X	zzP35e	members	and talk	
			https://drive.g	https://drive.g		Digital	
			oogle.com/driv	oogle.com/driv		writing	T1.
25			<u>e/folders/1LftK</u>	e/folders/1GBT		nad PPT	T2
20		Buckling class slenderness ratio/	pdFwm4beJczg	s2K6D10wLU-	To learn.	Chalk	T2,
		strength design	<u>5NIPIFShGkVsv</u> b4x	DOKE4Wr9ORtD	Buckling class	and talk	13
	-		bttps://deiter.c	https://drive.r	Duckning class	Digital	
			oogle com/driv	oogle com/driv	To undouter de	Digital	
			e/folders/1LftK	e/folders/1GBT	10 understand:	writing	
26			pdFwm4beJczg	s2K6D10wLU-	introduction to	pad, PPT,	
		Design of simple compression	5NIPiFshGkVsv	DdkE4wr9dRtb	compression	Chalk	
		members- procedure	<u>b4X</u>	zzP35e	members	and talk	

				WARTING VILLE BACTO LOUIS		
		https://drive.g	https://drive.g		Digital	
		oogle.com/driv	oogle.com/driv	To understand:	writing	
27		e/folders/1LftK	e/folders/1GB1	Introduction to	pad, PPT,	
	Design of simple compression	5NIPiFshGkVsv	DdkE4wr9dRtb	compression	Chalk	
	members- procedure	<u>b4X</u>	zzP35e	members	and talk	
		https://drive.g	https://drive.g		Digital	
		oogle.com/driv	oogle.com/driv		writing	
28	Design of simple compression	e/folders/1LftK	e/folders/1GBT		pad. PPT.	
_	members: laced- battened	DdFwm4beJczg	S2K6D10WLU-	To understand:	Chalk	
	columns	b4X	zzP35e	battened column	and talk	
		https://drive.g	https://drive.g		Digital	
		oogle.com/driv	oogle.com/driv	To learn To	writing	
29	Design of simple compression	e/folders/1LftK	e/folders/1GBT	know Splice	nad PPT	
<u></u>	members: splice_ column base_	pdFwm4beJczg	s2K6D10wLU-	column base slab	Chalk	
	slab base	<u>5NIPIFShGkVsv</u> b4X	DOKE4Wr9ORtb	base	and talk	
		bttps://drivo.g	<u>22F35E</u> https://drivo.g	Uase	Digital	
		oogle.com/driv	oogle.com/driv	To understand.	Digital	
20		e/folders/1LftK	e/folders/18jJi	To understand:	writing	
50	UNIT III . Introduction to	pdFwm4beJczg	<u>84vlsj_wtNgd8</u>	TO KHOW Plastic	pau, FF1,	
	UNIT-III : Introduction to	5NIPiFshGkVsv	BN102Syaf5_xx	Theory and plastic		
	plastic analysis, plastic moment	<u>D4X</u>	<u>KK</u>	ninge	and talk	
		https://drive.goo	https://drive.goo		Digital	
		gle.com/drive/fol	gle.com/drive/fo	To understand:	writing	
31		ders/1LftKpdFw m4belczg5NIPiEs	lders/18jJi84vlsj	To know Plastic	pad, PPT,	
	plastic section modulus, Plastic	hGkVsvb4X	af5_xxRK	Theory and plastic	Chalk	
	analysis of continuous beams			hinge	and talk	
		https://drive.g	https://drive.g		Digital	
		oogle.com/driv	oogle.com/driv		writing	
32		pdFwm4beJczg	84vlsi wtNgd8	To learn: To	pad, PPT,	
		5NIPiFshGkVsv	BN102Syaf5_xx	know plastic	Chalk	
	Theorems of plastic Analysis	<u>b4X</u>	<u>RK</u>	Analysis	and talk	
		https://drive.g	https://drive.g		Digital	
		oogle.com/driv	oogle.com/driv		writing	
33		e/folders/1LftK	<u>e/folders/18jJi</u> 84ylsi wtNgd8	To learn: To	pad, PPT,	
		5NIPiFshGkVsv	BN102Syaf5 xx	know plastic	Chalk	
	Theorems of plastic Analysis	<u>b4X</u>	<u>RK</u>	Analysis	and talk	
		https://drive.g	https://drive.g		Digital	
		oogle.com/driv	oogle.com/driv		writing	
34		e/folders/1LftK	<u>e/folders/18jJi</u>	To learn: To	pad, PPT,	
	Plastic analysis of continuous	5NIPiFshGkVsv	84VISJ WINgd8 BN102Svaf5_xx	know plastic	Chalk	
	beams	b4X	RK	Analysis	and talk	
		https://drive.g	https://drive.g		Digital	
		oogle.com/driv	oogle.com/driv	To understand.	writing	
36		e/folders/1LftK	e/folders/18jJi	To know Rending	nad PPT	
50	Laterally supported/unsupported	pdFwm4beJczg	84vlsj_wtNgd8	and Shear Strangth	Challz	
	harma	5INIPIESNGKVSV 64X	BN102Syaf5_xx	/ buokling	Clidik and talls	
	Deams			/ Duckning	and talk	

				ANALISE WALL BASED COLOR	
		https://drive.g	https://drive.g		Digital
		oogle.com/driv	oogle.com/driv	To understand:	writing
37		e/folders/1LftK	<u>e/folders/18jJi</u>	To know Bending	pad. PPT.
_	Laterally supported/unsupported	5NIPiFshGkVsv	84VISI_WtNgd8 BN102Svaf5_vv	and Shear Strength	Chalk
	beams	b4X	RK	/ buckling	and talk
		https://drive.g	https://drive.g	8	Digital
		oogle.com/driv	oogle.com/driv		writing
38		e/folders/1LftK	<u>e/folders/18jJi</u>	To design.	nad PPT
50	Design of laterally supported	pdFwm4beJczg	<u>84vlsj wtNgd8</u>	Lotorolly	Chall
	besign of faterally supported	5NIPIFSNGKVSV	BN102Syaf5_xx	Laterally	
	beams- Problems	<u>U4A</u>	<u>RK</u>	supported beams	and talk
		<u>nttps://drive.g</u>	https://drive.g		Digital
		e/folders/1LftK	e/folders/18ili		writing
39		pdFwm4beJczg	84vlsj wtNgd8	To design:	pad, PPT,
	Design of laterally supported	5NIPiFshGkVsv	BN102Syaf5_xx	Laterally	Chalk
	beams- Problems	<u>b4X</u>	<u>RK</u>	supported beams	and talk
		https://drive.g	https://drive.g		Digital
		oogle.com/driv	oogle.com/driv		writing
40		e/folders/1LftK	<u>e/folders/18jJi</u>	To understand:	pad, PPT,
	Bending and shear	5NIPiFshGkVsv	84VISI_WINgd8	Bending and shear	Chalk
	strength/buckling	b4X	RK	strength of beams	and talk
		https://drive.g	https://drive.g	strength of seams	Digital
		oogle.com/driv	oogle.com/driv		writing
41		e/folders/1LftK	e/folders/18jJi		writing
41		pdFwm4beJczg	84vlsj_wtNgd8	T 1 1 1 1 1 1 1 1 1 1	pad, PP1,
		5NIPiFshGkVsv	BN102Syaf5_xx	To design: built-	Chaik
	Design of built up sections	<u>b4x</u>	<u>RK</u>	up sections	and talk
		https://drive.goo	https://drive.goo		Digital
42		ders/1LftKpdFw	Iders/18jJi84vlsj	To design · built-	writing
	Design of built up sections	m4beJczg5NIPiFs	wtNgd8BN102Sy	un sostions	pad
	Design of built up sections	hGkVsvb4X-	at5_xxRK		Digital
		oogle.com/driv	nttps://drive.g		
		e/folders/1LftK	e/folders/18ili		writing
43		pdFwm4beJczg	<u>84vlsj_wt</u> Ngd8		pad
		5NIPiFshGkVsv	BN102Syaf5 xx	To design: beam	
	Design of beam splice	<u>b4X</u> -	<u>RK</u>	splice	
					Digital
		-	https://drive.g		writing
		<u>nttps://drive.g</u>	oogle.com/driv		pad
45		e/folders/1LftK	e/folders/18jJi		
		pdFwm4beJczg	84vlsj wtNgd8		
		5NIPiFshGkVsv	BK	To docione haam	
	Design of began and's	<u>b4X</u> -		anlice	
	Design of beam splice		1	spiice	
		https://drive.go	https://drive.g		Digital
		ogle.com/drive/	e/folders/1Nzc		writing
46		dFwm4beJczo5	mY4Xg27aFNX	To understand:	pad, PPT,
	UNIT-IV Design of welded	NIPiFshGkVsv		Introduction to	Chalk
		i in biron (b)			

-							7
47		Design of welded plate girders	https://drive.go ogle.com/drive/ folders/1LftKp dFwm4beJczg5 NIPiFshGkVsv b4X	https://drive.g oogle.com/driv e/folders/1Nzq mY4Xg27qFNX pw KAZLDZD4 HrI_MeH	Introduction to plate girders,	Digital writing pad	
48		Elements-economical depth	https://drive.go ogle.com/drive/ folders/1LftKp dFwm4beJczg5 NIPiFshGkVsv b4X -	https://drive.g oogle.com/driv e/folders/1Nzq mY4Xg27qFNX pw_KAZLDZD4 Hrl_MeH	To understand: economical depth,	Digital writing pad	
49		Design of main section	https://drive.go ogle.com/drive/ folders/1LftKp dFwm4beJczg5 NIPiFshGkVsv b4X -	https://drive.g oogle.com/driv e/folders/1Nzq mY4Xg27qFNX pw KAZLDZD4 HrI MeH	To learn: design of main section.	Digital writing pad	
50		Connections between web and flange	https://drive.go ogle.com/drive/ folders/1LftKp dFwm4beJczg5 NIPiFshGkVsv b4X	https://drive.g oogle.com/driv e/folders/1Nzq mY4Xg27qFNX pw_KAZLDZD4 Hrl_MeH	To understand: Connections between web flange,	Digital writing pad	T1,
51	4	Design of bearing stiffeners	https://drive.go ogle.com/drive/ folders/1LftKp dFwm4beJczg5 NIPiFshGkVsv b4X	https://drive.g oogle.com/driv e/folders/1Nzq mY4Xg27qFNX pw_KAZLDZD4 Hrl_MeH	To design : stiffners bearing,	Digital writing pad	T3
52		Design of intermediate stiffeners	https://drive.go ogle.com/drive/ folders/1LftKp dFwm4beJczg5 NIPiFshGkVsv b4X	https://drive.g oogle.com/driv e/folders/1Nzq mY4Xg27qFNX pw_KAZLDZD4 Hr1_MeH	To design: intermediate stiffeners	Digital writing pad	
53		Design of intermediate stiffeners	https://drive.go ogle.com/drive/ folders/1LftKp dFwm4beJczg5 NIPiFshGkVsv b4X	https://drive.g oogle.com/driv e/folders/1Nzq mY4Xg27qFNX pw_KAZLDZD4 Hrl_MeH	To design: intermediate stiffeners	Digital writing pad	
55		Design of web splice	https://drive.go ogle.com/drive/ folders/1LftKp dFwm4beJczg5 NIPiFshGkVsv b4X	https://drive.g oogle.com/driv e/folders/1Nzq mY4Xg27qFNX pw_KAZLDZD4 Hrl_MeH	To understand: Design of Plate girder using IS 800:2007 Problems related.	Digital writing pad	
56		Design of web splice problems	https://drive.go ogle.com/drive/ folders/1LftKp dFwm4beJczg5 NIPiFshGkVsv b4X	https://drive.g oogle.com/driv e/folders/1Nzq mY4Xg27qFNX pw KAZLDZD4 HrI_MeH	To learn: Design of Plate girder using IS 800:2007 Problems related.	Digital writing pad	T1, T2, T3
57		Design of Flange splice	nttps://drive.go ogle.com/drive/ folders/1LftKp dFwm4beJczg5 NIPiFshGkVsv	nttps://drive.g oogle.com/driv e/folders/1Nzq mY4Xg27qFNX pw_KAZLDZD4	To learn: Design of Flange splice	Digital writing pad	

r			1 / 7 7			7
			b4X	Hrl_MeH		
58	•	Design of Flongs online	https://drive.go ogle.com/drive/ folders/1LftKp dFwm4beJczg5 NIPiFshGkVsv b4X	https://drive.g oogle.com/driv e/folders/1Nzq mY4Xg27qFNX pw KAZLDZD4	To learn: Design	Digital writing pad
		Design of Flange spice	0.121	Hrl_MeH	of Flange splice	
59		UNIT-V DESIGN INDUSTRIAL STRUCTURES, Types of roof trusses	https://drive.go ogle.com/drive/ folders/1LftKp dFwm4beJczg5 NIPiFshGkVsv b4X	nttps://drive.g oogle.com/driv e/folders/1n4f 9E2qsraGG2EG H8dcC77G82O wpgkEs	To understand : Roof trusses	Digital writing pad
60		loads on trusses, wind loads	https://drive.go ogle.com/drive/ folders/1LftKp dFwm4beJczg5 NIPiFshGkVsv b4X	https://drive.g oogle.com/driv e/folders/1n4f 9E2qsraGG2EG H8dcC77G820 wpgkEs	To understand: Wind loads	Digital writing pad
61		Design of purlin	https://drive.go ogle.com/drive/ folders/1LftKp dFwm4beJczg5 NIPiFshGkVsv b4X	https://drive.g oogle.com/driv e/folders/1n4f 9E2qsraGG2EG H8dcC77G820 wpgkEs	To learn: Analysis of trusses, design of members,	Digital writing pad
62		Design of purlin	https://drive.go ogle.com/drive/ folders/1LftKp dFwm4beJczg5 NIPiFshGkVsv b4X	https://drive.g oogle.com/driv e/folders/1n4f 9E2qsraGG2EG H8dcC77G820 wpgkEs	To learn: Analysis of trusses, design of members,	Digital writing pad
63	5	Design of purlin	https://drive.go ogle.com/drive/ folders/1LftKp dFwm4beJczg5 NIPiFshGkVsv b4X	https://drive.g oogle.com/driv e/folders/1n4f 9E2qsraGG2EG H8dcC77G820 wpgkEs	To learn: Analysis of trusses, design of members,	Digital writing pad
63		PRESENTATION BY STUDENTS				
64		Design of purlin	https://drive.go ogle.com/drive/ folders/1LftKp dFwm4beJczg5 NIPiFshGkVsv b4X	https://drive.g oogle.com/driv e/folders/1n4f 9E2qsraGG2EG H8dcC77G82O wpgkEs	To learn: Analysis of trusses, design of members,	Digital writing pad
65		Design of purlin	https://drive.go ogle.com/drive/ folders/1LftKp dFwm4beJczg5 NIPiFshGkVsv b4X	https://drive.g oogle.com/driv e/folders/1n4f 9E2qsraGG2EG H8dcC77G820 wpgkEs	To learn: Analysis of trusses, design of members,	Digital writing pad
66		Truss design	https://drive.go ogle.com/drive/ folders/1LftKp dFwm4beJczg5 NIPiFshGkVsv	https://drive.g oogle.com/driv e/folders/1n4f 9E2qsraGG2EG H8dcC77G820	To design: Truss	Digital writing pad
L	1					

					7
		b4X	wpgkEs		
67	Truss design	https://drive.go ogle.com/drive/ folders/1LftKp dFwm4beJczg5 NIPiFshGkVsv b4X	https://drive.g oogle.com/driv e/folders/1n4f 9E2qsraGG2EG H8dcC77G82O wpgkEs	To design: Truss	Digital writing pad
68	Truss design	https://drive.go ogle.com/drive/ folders/1LftKp dFwm4beJczg5 NIPiFshGkVsv b4X	https://drive.g oogle.com/driv e/folders/1n4f 9E2qsraGG2EG H8dcC77G82O wpgkEs	To design: Truss	Digital writing pad
69	Design of welded Gantry girder	https://drive.go ogle.com/drive/ folders/1LftKp dFwm4beJczg5 NIPiFshGkVsv b4X	https://drive.g oogle.com/driv e/folders/1n4f 9E2qsraGG2EG H8dcC77G820 wpgkEs	To design: welded gantry girder	Digital writing pad
70	Design of welded Gantry girder	https://drive.go ogle.com/drive/ folders/1LftKp dFwm4beJczg5 NIPiFshGkVsv b4X	https://drive.g oogle.com/driv e/folders/1n4f 9E2qsraGG2EG H8dcC77G820 wpgkEs	To design: welded gantry girder	Digital writing pad
71	Design of welded Gantry girder	https://drive.go ogle.com/drive/ folders/1LftKp dFwm4beJczg5 NIPiFshGkVsv b4X	https://drive.g oogle.com/driv e/folders/1n4f 9E2qsraGG2EG H8dcC77G820 wpgkEs	To design: welded gantry girder	Digital writing pad
72	Design of welded Gantry girder	https://drive.go ogle.com/drive/ folders/1LftKp dFwm4beJczg5 NIPiFshGkVsv b4X	https://drive.g oogle.com/driv e/folders/1n4f 9E2qsraGG2EG H8dcC77G820 wpgkEs	To design: welded gantry girder	Digital writing pad

VIII. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENTOF PROGRAM OUTCOMES AND PROGRAM SPECIFICOUTCOMES:

Course Objectiv es	Program OutcomesPOPOPOPOPOPOPO1PO112345789012						Program Specific Outcome s PSO PSO PSO 1 2 3								
I	2	3	_		-	-	_	_	-	-	_	-	3	-	-
II	_	_	_			_		_		_	_	L	_	_	_
III	_	3	_		3	_	_	_		-	_	_	3		
IV	_	-	-		5	-	_	-	_	-	_	-	-	-	-
V	-	-	2		3	-	-	-	-		-	-	-	-	-
average	0.4	1.2	0.4	-	1.2	-	-	-	-	-	-	-	1.2	-	-
1	NT.										2 11	 			

1=None

2=Supportive 3=Highlyrelated

IX. QUESTION BANK: DESCRIPTIVE QUESTIONS: (WITH BLOOMSPHRASES)

UNIT-I

SHORT ANSWER QUESTIONS-

S.NO	Question	Blooms	Progra
		Taxonomy	mme
		Level	Out
			come
1.	What are the advantages and disadvantages of steel as a structural material?	Understand	1
2.	State the physical and mechanical properties of steel as a structural material.	Remember	1
3.	How the standards and specifications are different from codes?	Understand	1
4.	Why is it necessary to follow codes of practice for designing structures?	Understand	1
5.	Find the shape factors for a Square of side 'a' with its diagonal parallel to the zz- axis.	Understand	1
6.	Sketch the typical stress-strain curve of steel, indicating the important regions.	Remember	2
7.	What is meant by ductility? Why and where is it important?	Understand	2
8.	How the toughness of steel is measured?	Remember	2
9.	How are residual stress induced in steel sections? Sketch the typical residual stress distribution in a rolled I beam and a welded I beam.	Understand	2

		ANALTHOU HOLE BALLED	NUCLAY ON THE SECOND	
10.	How do residual stresses affect design of intermediate columns and beams?	Understand	2	

ALESTIN

S.No	Question	Blooms Taxonomy	Progra mme
		Level	Out come
1.	How the local buckling of steel structural shapes does affect the member strength? How is it avoided?	Understand	1
2.	What are the defects that may originate while rolling steel section?	Remember	1
3.	Strength and ductility of steel are equally important for steel structures. How are these improved? If the strength is to be increased while retaining the desired ductility of steel. What is done?	Understand	2
4.	Draw idealised stress-strain curve for mild-steel. Discuss the effect of residual stresses.	Remember	2
5.	A specimen was tested in laboratory and the yield strength was found to be 250 N/mm ² . Taking a factor of safety of 2. Find the working stress.	Understand	1
6.	A 100 mm long steel bar and having a square cross section of 20 mm is pulled in tension with a load of 90 kN. It experiences an elongation of 0.10 mm. Assuring that the deformation is entirely elastic, determine the modulus of elasticity of the	Understand	1
7.	Hot-rolled steel sections are used to fabricate steel sections. Under no load Condition whether the section will have stresses? Comment!	Understand	2
8.	An ISA 65 x 65 x 10 carries a tensile load of 200 KN, applied along its centroidal axis. This angle is to be welded to a gusset plate. Find out the Lengths of side fillet welds required at the heel and toe of the angle	Understand	3

9.	A 300 ISF 14 mm of grade Fe410 is used as a tension member in a lattice girder. It is connected to a 18 mm thick gusset plate by 18 mm diameter bolts of grade 4.6 Calculate the effective net area of the member, if (a) chain bolting is done as showninFigure1. (b) zig-zag bolting is done as showninFigure1. $\int_{0}^{1} \frac{1}{2} \int_{0}^{1} $	Understand	3	
10.	A steel flat of rectangular section of size 70×6 mm is connected to a gusset plate by three bolts each having a shear capacity of 15 kN in holes having diameter 11.5 mm.Iftheallowabletensilestressintheflatis150MPa, Find the maximum tension that can be applied to theflatis	Understand	3	

UNIT-2

SHORT ANSWER QUESTIONS-

-

S.N	Question	Blooms Taxonomy	Progra
		Level	mme
			Out
			come
1.	What is buckling?	Remember	4
	Two steel columns P (length L and yield strength		
	$f_y=250 MP_a$) and Q (length 2L and yield strength		
2.	$f_y=500 MP_a$) have the same cross-sections and	Understand	4
	end-conditions. Find the ratio of buckling load of		
	column P to thatof column Q.		
3.	What is radius of gyration?	Remember	4
4	What is slenderness ratio? State the relation between	Remember	4
т.	elastic critical stress and slenderness ratio.	ivenienioer	-

5.	Compression members are more critical than tension members. Comment!	Understand	4
6.	Why are plastic or compact sections preferred for compression members?	Understand	4
7.	What is the difference in behaviour of long and intermediate columns?	Understand	4
8.	Which of the two, buckling or stiffness of compression members is more critical?	Remember	4
9.	Why are four different buckling curves prescribed to Understand column strength?	Understand	4
10.	How does strain hardening affect the strength of short columns?	Understand	4

S.N o	Question	Blooms Taxonomy Level	Programm e Out come
1.	Why a separate provision (formula) for the design of a single angle strut has been proposed by IS: 800 code?	Understand	5
2.	Cite the instances when a column may be regarded as an axially loaded column?	Remember	4
3.	What is the basic difference in behaviour between tension and compression members, while resisting the loads?	Understand	4
4.	How does the behavior of a compression member differ based on its length?	Understand	4
5.	Why is it better to choose plastic or compact sections for columns?	Understand	2
6.	Derive the Euler's formula.	Understand	4
7.	Calculate the design strength of W14 x 74 with length of 20 ft. and pinned ends. A36 steel is used.	Understand	4
8.	A strut of 3.4 m length in a truss is connected at each of its ends with welding to the gusset plate. The strut is of a section ISA 100 x 100 x 10 mm.	Understand	4
	Determine its equivalent slenderness ratio.		
9.	Design a column of I-section to support a factored load of 1050 kN. The column has an effective length of 7.0 m with respect to z-axis and 5.0 m with respect to y-axis. Use steel of grade Fe 410.	Understand	4
10.	 (a) Design a built up column composed of two channel sections placed back to back, carrying an axial load of 1500 kN. The effective length of column is 7 m (b) Also design a single lacingsystem. 	Understand	4

UNIT-3

SHORT ANSWER QUESTIONS-

S.N o	Question	Blooms Taxonomy Level	Programme Out come
1.	What are rolled I-sections widely used as beam members?	Remember	4
2.	Differentiate between the bending and buckling of a beam.	Understand	4
3.	How does buckling of column and beam differ?	Remember	4
4.	Why should plastic or compact section be preferred for flexural members in limit state design method?	Understand	4
5.	What are checks to be performed for beam member design?	Understand	4
6.	What is the difference between bending and buckling of a beam member?	Remember	4
7.	What is meant by lateral torsional buckling of beam member?	Understand	4
8.	Under what conditions can lateral buckling occur?	Understand	4
9.	Under what conditions can a beam member be assumed as laterally restrained?	Remember	4
10.	What is local buckling of a beam member	Remember	4

S.No	Question	Blooms	Programm
		Taxonomy Level	e Out come
1.	Application of loads on a beam may be at its top flange or bottom flange or centroid. How does level of application of load affect the beamdesign?	Understand	4
2.	How are the column buckling and the lateral buckling of beam similar?	Understand	4
3.	How will torsion will be there in beams? What is the difference in St Venant torsion	Understand	4
	and warping torsion?		
4.	Mention common situations where shear might become critical?	Remember	4
5.	What is meant by web crippling?	Remember	4

		29	-25
6.	Design by limit state method as per IS: 800 draft code, a hand operated crane, which is provided in a shed, whose details are: Capacity of crane = 50 kN Longitudinal spacing of column = 6m Center to center distance of gantry girder = 12m Wheel spacing = 3m Edge distance = 1m Weight of crane girder = 40 kN Weight of trolley car = 10 kN.	Understand	4
7.	7. Design a beam of 5 m effective span, carrying a uniform load of 20 kN/m if the compression flange is laterally supported (Assume $f_y = 250 \text{ N/m}^2$) Understand		4
8.	Design a beam of effective span 6.0 m and subjected to a bending moment of 105.3 x 106 Nmm for the following conditions (i) The compression flange is laterally unsupported throughout, (ii)The beam is encased in concrete Checks for deflection and shear are not required. Assume $f_y = 250$ MPa.	Understand	4
9.	Design a simply supported beam of effective span 1.5 m carrying a factored concentrated load of 360 kN at mid span.	Understand 4	
10.	Design a simply supported beam of 10 m effective span carrying a total factored load of 60 kN/m. The depth of beam should not exceed 500 mm. The compression flange of the beam is laterally supported by floor construction. Assume stiff end bearing is 75 mm.	Understand	4

UNIT-4

SHORT ANSWER QUESTIONS-

S.No	Question	Blooms Taxonomy Level	Programme Out come
1.	What is the meaning of eccentricity in loading	Remember	5
2.	What is the meant by Eccentric connection in steel structures.	Understand	5
3.	How are the building connections classified based on their moment-rotation characteristics?	Remember	5
4.	What is stiffened seat connection?	Remember	5
5.	When the seated beam connections are preferred	Remember	5
	and name the types?		
6.	Mention some of the requirements of good connections (joints).	Remember	5

7.	What are the possible ways to impose eccentric loading on a welded joint.	Understand	5
8.	The base of a pillar crane is fastened to the foundation by n bolts equally placed on a boltcircle of diameter d . The diameter of the pillar is D . Determine the maximum load carried by any bolt when the crane carries a load W at a distance L from the center of the base. Observe the figure below to solve the problem.	Understand	5
9.	A bracket is supported by means of 4 rivets of samesizeasshowninfigurebelow.Determinethe diameter of the rivet if the maximum shear stress is140MPa.	Understand	5
10.	What are the assumptions that are used when analyzing a simple truss?	Remember	5

S.No	Question	Blooms Taxono my Level	Programme Out come
1.	How are the building connections classified based on their moment- rotation characteristics?	Understand	5
2.	Describe connection of purlin to rafter with neat sketch.	Understand	5
3.	Explain Anchorages of trusses with concrete	Understand	5
	column neat sketch.		
4.	Given: Loads as shown on the truss. Find the forces in each member of the truss.	Understand	5

5.	For this truss, determine the number of zero-force members. $F \xrightarrow{F} \xrightarrow{F} \xrightarrow{F} \xrightarrow{F} \xrightarrow{F} \xrightarrow{F} \xrightarrow{F} F$	Understand	5
6.	An ISLB 300 carrying UDL of 50 kN/m has effective span of 8 m. This is to be connected to the web of girder ISMB 450. Design the framed connection using 20 mm black bolts.	Understand	5
7.	An ISMB 450 is connected to the flange of a column ISHB 300 @618 N/m. The end reaction transmitted the beam is 120 kN. Design an unstiffened seated connection. Use M20 black bolts.	Understand	5
8.	Determine the safe load P that can be carried by the joint shown inFigure below. The bolts used are 20 mm diameter of grade 4.6. The thickness of the Flange of I-section is 9.1 mm and that of bracket plate 10mm. $40 \text{ mm} \neq 0$ $80 \text{ mm} \neq 0$ $80 \text{ mm} \neq 0$ $40 \text{ mm} \neq 0$ $80 \text{ mm} \neq 0$ $40 \text{ mm} \Rightarrow $	Understand	5
9.	Design a bracket connection to transfer an end reaction of 225 kN due to factored loads as in Figure below. The end reaction from the girder acts at an eccentricity of 300 mm from the face of the column flange. Design bolted jointconnecting the Tee-flange with the column flange. Steel is of grade Fe 410 and bolts of grade4.6.	Understand	5

		<	WANTING THE MAKE CONCERCEN
	300 mm Tee bracket		
10.	Given: Loads as shown on the truss. Determine the force in all the truss members (do not forget to mention whether they are in Tension or Compression). $\int_{2m}^{600 \text{ N}} \int_{2m}^{0} \int_{2m}^{2m} \int_$	Understand	5

ATT

UNIT-5

SHORT ANSWER QUESTIONS-

S.No	Question Blooms		Programm
		Taxonomy	e Out come
		Level	
1.	Give the expression for the optimum depth of plate girder.	Remember	5
2.	Differentiate between a beam and a plate girder.	Remember	5
3.	Where are the plate girders used?	Remember	5
4.	What are the main characteristics of a plate girder? Remember		5
5.	State some advantages and disadvantages of plate girders over trusses.		5
6.	List the different elements of a welded plate girder	Understand	5
7.	What are the various types of stiffners?	Remember	5
8.	State the minimum web thickness provisions of a IS 800:2007Understand		5
9.	What is the range of the minimum thickness of the web that is usually adopted in practice?	Understand	5
10.	Why / where are bearing stiffeners provided?	Understand	5

S.No	Question	Blooms Taxonomy	Programm e Out come
1.	In what sense the design of plate girders by elastic method and limit state method is different?	Understan d	5
2.	What is tension field action in plate girders?	Understan d	5
3.	How does a plate girder derive post- buckling strength?Understan d		5
4.	Briefly explain the steps involved in the design of plate girders.	Understan d	5
5.	Why have bolted and riveted plate girders become obsolete?Understan d		5
6.	Design a welded plate girder 24 m in span and laterally restrained throughout. It has to support a uniform load of 100 kN/m throughout the span exclusive of self-weight. Design the girder without intermediate transverse stiffners. The steel for the flange and web plates is of grade Fe	Understan d	5
7.	410. Yield stress of steel may be assumed to be 250 MPa irrespective of the thickness of plates used. Design the cross section, the end load bearing stiffner and connections.	Understan d	5
8.	Design a welded plate girder 24 m in effective span and simply supported at ends. It carries an uniformly distributed load of 100 kN/m. draw section at support and front elevation of plate girder.Understan d		5
9.	What are stiffeners and why are they used? How many types of stiffeners are being used in the design of plate girder? Give the conditions (as per IS 800) when stiffeners are required.Understan d		5
10.	A plate girder is subjected to a maximum factored moment of 4000 kN-m and factored shear force of 600 kN. Design girder without any stiffeners.	Understan d	5

X. OBJECTIVEQUESTIONS:

5.

- UNIT-I 1. The Indian codes which deals with the steel structure is (a)IS: 800 (b) IS: 875 (c) IS: 475 (d) IS:400 2. The main advantage of steel structuresis (a) Itshighstrength (b) its long servicelife (c) its gas &water tightness (d) All theabove 3. With a percentage increase in carbon in steel, itdecreases (a) Ductility (b) strength (c) hardness (d) brittleness 4. Poisson's ratio for steel within the elastic limit varies from (a) 0.15 to 0.20 (b) 0.25 to 0.24 (c) 0.25 to 0.33 (d) 0.33 to 0.35 The tensile strength of mild steel for bolts & nuts should not be lessthan (a) 32 kg/mm^2 (b) 36 kg/mm^2 (c) 40 kg/mm^2 (d) 44 kg/mm^2 6. The heaviest I-section for same depthis a) ISMB b) ISLB c) ISHB d)ISWB b) Bending compressive and tensile stresses respectively are calculated basedon net area andgross area b) gross area and netarea c) net area inbothcases d) gross area in bothcases 7. If the thickness of thinnest outside plate is 10 mm, then the maximum pitch of rivetsin tension will be takenas a)120mm b) 160 mm c) 200mm d) 300mm 8. In a gusseted base, when the end of the column is machined for complete bearing on thebase plate, then the axial load is assumed to be transferred to baseplate a) fully by directbearing b) fully throughfastenings c) 50% by direct bearing and 50% throughfastenings d) 75% by direct bearing and 25% throughfastenings 9. When the axis of load lies in the plane of rivet group, then the rivets are subjected to a) onlyshearstresses b) only tensilestresses c) both (a)and (b) d) none of theabove UNIT-II
 - The ratio of unsupported length to least radius of gyration is knownas

 (a) Gyration ratio
 (b)Slendernessratio
 (c) Both a and b
 (d) none of above
 - 2. The effective length of a compression member of length L held in position and restrained in direction at one end and effectively restrained in direction but not held in position at the other end, is

(a)L (b) 0.67L (c)0.85L (d) 2L

- 3. A structural member subjected to compressive stress in a direction parallel to its longitudinal axis, is generally known as
 - (a) Column (b) stanchion (c) post (d)strut

4. Slenderness ratio of a compression memberis

	Moments of Interia		Effective length
(a)	Radius of gyration	(b)	Area of cross-section
(c)	Radius of gyration Effective length	(d)	Radius of gyration Area of cross-section

- 5. The distance between e.g. of compression and e.g. of tension flanges of a plate girder, is knownas
 - a. Over all depth b.Cleardepth c.Effectivedepth d.None of these
- 6. If the depth of two column sections are equal, then the column splice isprovided a. with filler plates b.with bearing plates c.with filler and hearing plates d.none of these
- Web crippling generally occurs at the point where

 a. bending moment is maximum b.shearing force is minimum
 c. concentrated loads act d.deflection is maximum
- According to IS Specifications, the effective length of a column effectively held inposition at both ends and restrained in direction at one end is taken a) 0.67 L b) 0.8 L c) L d) 1.5 L
- The effective length of a battened strut effectively held in position at both ends butnot restrained in direction is taken as
 a) 1.8 L b) L c) 1.1 L d) 1.5 L
 - a) 1.8 L b) L c) 1.1 L d) 1.5 L
- 10. The maximum slenderness ratio of a compression member carrying both deadand superimposed loadis
 - a)180 b) 200 c) 250 d)350

UNIT-III

1. A beam is defined as a structural member subjected to

(a) Axial loading (b) Transverse loading

(c) Axial andtransverseloading (d) None of these.

The area A_p of cover plates in one flange of a built up beam, is given by

(a)
$$A_P = \frac{Z_{reqd} + Z_{beam}}{h}$$
 (b) $A_P = \frac{Z_{reqd} + Z_{beam}}{A_P}$ (c) $A_P = \frac{Z_{reqd} + Z_{beam}}{h}$

2. The average shear stress for rolled steel beam section, is

(a)845kg/cm² (b)945 kg/cm² (c)1025kg/cm² (d) 1500 kg/cm²

3. The rolled steel I-sections are mostly used as beams because

theseprovide

- (a) Large moment of inertia with less cross-sectionalarea
- (b) Large moment of resistance as compared to othersection
- (c) Greaterlateralstability (d) All theabove
- 5. The permissible stress in bending for rolled steel I-beams and channels, is (a)1500kg/cm² (b)1575kg/cm² (c)945kg/cm² (d) 1650kg/cm²

- 6. Rolled steel beams are designated by Indian Standard series andits
 - (a) Weight per metre and depth of its section (b) Depth of section and weight permetre
 - (c) Width of flange and weightpermetre (d) Weight per metre and flangewidth.
- 7. A major beam in a building structure, is knownas(a) agirder(b) afloorbeam(c) amain beam(d) all theabove
- 8. Lacing bars in a steel column should be designed toresista) bending moment due to 2.5% of the columnload
 - b) shear force due to 2.5% of the columnload
 - b) shear force due to 2.5% of the columnicad 2.5% of the columnicad
 - c) 2.5% of the column load d) both (a) and(b)
- 9. Angle of inclination of the lacing bar with the longitudinal axis of the columnshould preferably bebetween
 - a) 10° to 30° b) 30° to 40° c) 40° to 70° d) 90°
- 10. Battening is preferable when he
 - i) column carries axial loadonly
 - ii) space between the two main components is not verylarge
 - iii) column is eccentrically loaded The correct answeris
 - a)only (i) b) only (iii) c) (i) and (ii) d) (ii) and (iii)

UNIT-IV

- 1. Lug angleis
 - a) used with singleangle member c)used withchannel member d)used with channel member
- 2. Bulb angles are usedin
 - a) column building b)bridge building c)ship building d)water tankbuilding
- 3. Rolled steel angle sections are classifiedas
 - a) equal angles b)unequal angles c)bulb angle d)all theabove
- 4. The stiff portion of a bearing stiffeners is taken equaltoa)Depth of the beam b)3/4 th depth of the beam c)depth of the beam d)2/3 depth of beam
- 5. According to IS:800 lacing bars resist transverse shear equalto
 - a)1.0% of theaxial load b)2.0% of the axial load
 - c)2.5% of theaxialload d)3.0% of the axialload
- 6. The overlap of batten plates with the main members in welded connections should bemore
- than a)3t b) 4t c) 6t d) 8t where t = thickness of the battenplate
- 7. The slenderness ratio of lacing bars should not exceed $100 \text{ l} \times 100 \text{ l} \times 100 \text{ l} \times 100 \text{ l}$
 - a) 100 b) 120 c) 145 d)180
- 8. Minimum pitch provided in riveted steel tanksis
 a)1.5d
 b) 2.0d
 c) 2.5d
 d) 3.0 d
 where d is diameter of rivets
- 9. Shear buckling of web in a plate girder is prevented by using
 - a) verticalintermediatestiffener c)bearingstiffener d) none of theabove
- 10. Horizontal stiffener in a plate girder is provided to safeguardagainst
 - a) shear buckling of webplateb) compression buckling of webplated) all of the above

UNIT V

- 1. In a steel plate girder, the web plate is connected to the flange plates by fillet welding. The size of fillet welds is designed to safelyresist.
 - (a) the bending stresses in the flan (b) the vertical shear force at the section
 - (c) the horizontal shear forces between the flanges and the webplate
 - (d) the forces causing buckling in the web
- 2. Gantry girders are designed to resist:
 - 1) Lateral loads 2)Longitudinalload 3) Verticalloads
 - (a) 1 and 2 only (b) 1 and 3 only (c) 2 and 3 only (d) 1, 2 and 3
- 3. The distance between the outer faces of flanges of a plate girder, is known as
 - (a)overall depth (b) clear depth (c)effective depth (d) None of these
- 4. Bearing stiffener in a plate girder is used to
 - a) transfer the load from the top flange to the bottomone
 - b) prevent buckling ofweb
 - c) decrease the effective depthofweb d) prevent excessive deflection
- 5. The forces acting on the web splice of a plate girderare a)axialforces
 b) shear and axialforces
 c) shear and banding forces
 - c) shear and bending forces d) axial and bending forces
- 6. Bearing stiffeners are providedat
 - i) the supports ii) the midspan
 - iii) the point of application of concentrated loads The correct answeris
 - a) only(i) b) both (i)and(ii) c) both (i)and(iii) d) (i), (ii) and(iii)
- 7. Rivets connecting flange angles to cover plates in a plate girder are subjected toa) horizontal shear only b) verticalloadonlyc) both (a)and(b)d) none of the above
- 8. Bearing stiffener in a plate girder is used to
 a) transfer the load from the top flange to the bottom one
 b) prevent buckling of web
 c) decrease the effective depthof web
 d) prevent excessive deflection
- 9. Economical depth of a plate girder correspondsto
 a)minimumweight
 b) minimum depth
 c)maximumweight
 d) minimum thickness of web
- 10. Shear buckling of web in a plate girder is prevented by usinga) vertical intermediate stiffener b) horizontal stiffener at neutral axisc) bearing stiffenerd) none of the above

GATE

- Two steel columns P (length L and yield strength fy = 250MPa) and Q (length 2L and yield Strength fy=500MPa) have the same cross-sections and end-conditions. The ratio of buckling load of column P to that of column Qis: a)0.5 9 b)1.0 c)2.0 d) 4.0
- AsymmetricI-section(withwidthofeachflange=50mm,thicknessofeachflange=10mm, depth of web = 100 mm, and thickness of web =10mm) of steel subjected to a shear force of 100 mm. Find the magnitude of the shear in N/mm2) in the web at its junction with the topflange.
- 3. In a steel plate with bolted connections, the rupture of the net section is a mode of failure under
 - (A) Tension (B) compression (C) flexure (D)shear

4. Theratioofthetheoreticalcriticalbucklingloadforacolumnwithfixedendstothatofanother column with the same dimensions and material, but with pinned ends, is equal to

(A) 0.5 (B) 1.0 (C) 2.0 (D) 4.0

5. A 12 mm thick plate is connected to two 8 rnm thick plates, on either side through a 16 rnm diameter power driven field rivet as shown in the figure below. Assuming permissible shear stress as 90 MPa and permissible bearing stress as 270 MPa in the rivet, the rivet value of the joint is

A)56.70 kN (B) 43.29 kN (C) 36.19 kN (D) 21.65 Kn

- 6. Battening is preferable when he
 - i) column carries axial loadonly
 - ii) space between the two main components is not verylarge
 - iii) column is eccentrically loaded The correct answeris
 - a) only (i) b) only (iii) c) (i) and (ii) d) (ii) and (iii)
- 7. A steel flat of rectangular section of size 70 x 6 mm is connected to a gusset plate by three boltseachhavingashearcapacityof15kNinholeshavingdiameter11.5mm.Iftheallowable tensile stress in the flat is 150 MPa, the maximum tension that can be applied to the flatis

(A) 42.3 kN (B) 52.65 kN (C) 59.5 kN (D) 63.0 kN

8. Abracketconnectionismadewithfourboltsof10mmdiameterandsupportsaloadof10kN at an eccentricity of 100 mm. The maximum force to be resisted by any bolt willbe

A) 5 kN (8) 6.5 kN (C) 6.8 kN (D) 7.16kN

9. Bearing stiffeners in plate girders are provided to

- (a) decrease the effective depth of web
- (b) transfer the load from the top flange to the bottomflange
- (c) prevent buckling of web
- (d) increase the bearing capacity of the flange

10. Strength and serviceability of a structure cannot be predicted on account of several unforeseen factors.

(a)1, 2 and 3 (b) 3 only (c) 2 only (d) 1 only

IES:

1. Two angles of ISA $100 \ge 100 \ge 6$ have been used as a tie member. The angles are weldedon either side of a gusset and tag welded over its length. The maximum length of the member is:

(For ISA 100x100x6, Area = 2334 mm^2 and YXX = 30 mm)

(a)5.4 m (b) 6.0 m (c) 12.0 m (d) 24.0 m

2. Gantry girders are designed toresist:

1)Lateral loads 2)Longitudinal load 3)Vertical loads

(a)1 and 2 only (b) 1 and 3 only (c) 2 and 3 only (d) 1, 2 and 3 $\,$

3. The effective width of outstand in compound steel columns for design purposes is equalto

(a) half the flange width (b) distance of the free edge from the rivet line

(c) distance of the free edge from the tiffeners

(d) distance of the free edge to the nearest row ofrivets

4. For a steel built up column subjected to an axial force of 1200 kN, the lacing system is tobe designed for resisting transverse shearof

(a)15kN (b)20 kN (c)25kN (d) 30Kn

5. At certain location of a plate girder of web size 1000x10, a pair of bearing stiffeners 100 mmx 5 mm is welded. The effective area of bearing stiffenersis

(a)1000 mm² (b)2000 mm² (c)3000 mm² (d) 5000 mm²

6. ISMB 250 (Ze = 410×10^3) mm³ has been chosen as a beam cross-section to resist a

bending moment. Two plates 100 mm x 10 mm are welded to each flange to enhance the moment capacity. The enhanced moment capacityis

(a)71.5kNm (b) 79.5kNm (c) 99.0kNm (d) 148.0kNm

7. Bearing stiffeners in plate girders are provided to

- (a) decrease the effective depth of web
- (b) transfer the load from the top flange to the bottomflange
- (c) prevent buckling of web (d) increase the bearing capacity of the flange

8. Which of the following statements is/arecorrect?

1) A steel structure designer can guarantee the safety of thestructure.

2)Working stress method of design of steel structures offers a safer and economical structure.

3)Strength and serviceability of a structure cannot be predicted on account of

severalunforeseen factors.

(a)1, 2and 3 (b)3only (c)2only (d) 1only

9.When the effect of wind or earthquake load is taken into account in the design of a riveted connection, the permissible stresses in rivets may be exceeded by

(a) 16.66% (b)33.33% (c) 25% (d)50%

10.A mild steel flat subjected to a tensile force of 840 kN is connected to a gusset plate using rivets. If the permissible forces required per pitch length (i) to shear a single rivert, (ii) to crush the rivet and (iii) to tear the plate are 50 kN, 80 kN and 60 kN respectively, then the number of rivets required is

(a)12 (b) 14 (c) 16 (d)17

11. The effective throat thickness of a fillet weld dependsupon

(a) angle betweenfusionfaces (b) length of weld

(c) permissibleshearstress (d) type of weld

12. When the load line coincides with the centroid of the rivet group, the rivets are subjected to

(a)shearonly (b)tension only (c) bendingonly (d) shear as well astension

13. An ISMB 500 is used as a beam in a multistory construction. From the viewpoint ofstructural design, it can be considered to be 'laterally restrained'when

(a) the tension flange is laterally restrained

(b) the compression flange is laterally restrained

(c) the web is adequately stiffened

(d) the conditions in both (a) and (c) are met.

14.A steel column pinned at both ends has a buckling load of 200kN, If the column is restrained against lateral movement at its mid-height, its buckling load will be

(a)200kN (b)283kN (c) 400kN (d) 800 kN

15. Consider the following provisions to possibly improve the shear capacity of a steel girder: 1.Horizontal stiffeners 2.Verticalstiffeners 3.Columnsplice 4.Bearingstiffeners Which of these arecorrect?

(a) 1,2,3 and 4 (b) 3 and 4 only (c) 1 and 2 only (d) 2 and 3 only

16. In a steel plate girder, the web plate is connected to the flange plates by fillet welding. The size of fillet welds is designed to safelyresist.

(a) the bending stresses in the flanges (b) the vertical shear force at thesection

(c) the horizontal shear forces between the flanges and the webplate

(d) the forces causing buckling in the web

17. In laced columns, end tie-plates are provided to

(a) check the buckling of column

(b) keep the column components inposition

(c) check the distortion of column sections at ends because of unbalanced

18. Which of the following elements of a pitched roof industrial steel building primarily resists lateral load parallel to the ridge?

(a)Bracing (b) Purlin (c) Truss (d)Column

XIII. WEBSITES:

- 1. http://www.asce.org
- 2. <u>http://www.icivilengineer.com</u>
- 3. http://www.construction-guide.in
- 4. http://nptel.ac.in/courses/112105171/1

XIV.EXPERTDETAILS:

- 1. Vinayak Eswaran, Professor & Head of the Department, IITHyderabad
- 2. Dr.Raja Banerjee, Associate Professor, IITHyderabad
- 3. Dr.YVD Rao. Faculty In charge, Engineering Services Division, BITS Pilani, Hyderabad Campus
- 4. Dr. Jeevan Jaidi, Associate Professor, Dept. of Mechanical Engineering, BITS-Pilani, HyderabadCampus
- 5. Dr P. Laxminarayana, Head, Dept. of Mechanical Engineering, Osmania University College of Engineering, Hyderabad
- 6. Dr. T.I. Eldho. Department of Civil Engineering, IITBombay

XV. JOURNALS:

- 1 Thesis Digest on civilEngineering
- 2 International Engineering and Technology Journal of Civil and Structure
- 3 International journal of civilengineering
- 4 Journal of information knowledge and research in civilengineering
- 5 International journal of civil engineering andtechnology
- 6 International Journal of Civil Engineering and Applications
- 7 Recent Trends in Civil Engineering and Technology
- 8 World Research Journal of CivilEngineering

XVI. LIST OF TOPICS FOR STUDENTSEMINARS:

- 1. Mechanical Properties of Steel
- 2. Riveted, Welded, and BoltedConnections
- 3. Design of TensionMembers
- 4. Design of CompressionMembers
- 5. Design of SteelBeams
- 6. Design of PlateGirders
- 7. Design of RoofTruss

XVII. CASE STUDIES / SMALLPROJECTS:

- 1. Study of various types of connections
- 2. Study of PlatedGirders
- 3. Study of Columns and ColumnBase
- 4. Study of RoofTruss